## Other NP-Complete Problems

More terminology for Boolean expressions:

- A literal is a variable or the negation of a variable.
- A clause is a single literal or the disjunction (OR) of literals..
- A Boolean expression is in conjunctive normal form if it is a single clause or the conjunction (AND) of clauses. For example, $\left({ }^{\sim} x \vee{ }^{\sim} y \vee z\right) \wedge\left(x \vee{ }^{\sim} y \vee \sim^{\sim}\right)$

CNF-SAT is the language of satisfiable conjunctive normal form expressions.

Theorem: CNF-SAT is NP-Complete.
Proof: We will show that SAT reduces (in polynomial time) to CNFSAT. In other words we will start with a Boolean expression s and produce expression $s$ ' so that $s$ is in SAT if and only if $s$ ' is in CNF-SAT.

If we had a truth table for $s$ it would be easy to make s'. For example, suppose we know that the only times $s$ is $F$ is when $x=T, y=T, z=F$ and when $x=F, y=T, z=T$. We can build clauses that negate these instances:

$$
s^{\prime}=\left(\sim_{x} \vee \sim y \vee z\right) \wedge(x \vee \sim y \vee \sim z)
$$

Unfortunately, building a truth table for s takes exponential time.

Rather than building a truth table, given s we will build a CNF expression s' that has additional variables (and so is not equivalent to s) but is satisfiable if and only if $s$ is satisfiable.

Step 1: Parse s into a parse tree.
For example, if $s$ is $\sim(x \vee \sim y) \vee \sim_{z}$ the parse tree is


Step 2: Walk down the tree using DeMorgan's laws to push negations to variables.


Step 3. Start at the leaves and walk up, replacing each node with a CNF expression that is satisfiable if and only if the subtree rooted at the node is satisfiable.

Case 3A: Suppose the tree is

and we have already replaced E1 with CNF expression F1 and E2 with
F2. We replace the $\wedge$-node with F1^F2.

## Case 3B:

Suppose the tree is

## E1 E2

and we have already replaced E1 with CNF expression $\mathrm{F} 1=\mathrm{g}_{1} \wedge \mathrm{~g}_{2} \wedge \mathrm{~g}_{3} \wedge \ldots \wedge \mathrm{~g}_{\mathrm{K}}$ (the $\mathrm{g}_{\mathrm{i}}$ are the clauses of F1) and E2 with $\mathrm{F} 2=\mathrm{h}_{1} \wedge \mathrm{~h}_{2} \wedge \mathrm{~h}_{3} \wedge \ldots \wedge \mathrm{~h}_{\mathrm{L}}$. Let y be a new variable not used in s or any of the F -expressions. We replace the V -node with $\mathrm{F}=\left(\mathrm{y} \vee \mathrm{g}_{1}\right) \wedge\left(\mathrm{y}_{\mathrm{Vg}}^{2}\right) \wedge \ldots \wedge\left(\mathrm{y} \vee \mathrm{g}_{\mathrm{k}}\right) \wedge\left(\sim \mathrm{y} \vee \mathrm{h}_{1}\right) \wedge\left(\sim \mathrm{y} \vee \mathrm{h}_{1}\right) \wedge \ldots \wedge\left(\sim \mathrm{y} \vee \mathrm{h}_{\mathrm{L}}\right)$ If $y=T$ this requires $h_{1} \wedge h_{2} \wedge h_{3} \wedge \ldots \wedge h_{L}$ to be $T$, so $F 2$ must be $T$. Similarly, if $\mathrm{y}=\mathrm{F}$ then F 1 must be T . F is satisfiable if and only if F1VF2 is satisfiable.

By the time we get to the root of the tree this has produced a CNF expression s' that is satisfiable if and only if $s$ is satisfiable. If the length of $s$ is $n$ then $s$ ' has no more than $n$ clauses, each with length no more than $n$, so $\left|s^{\prime}\right|<=n^{2}$.

## Example: In an earlier example we parsed $s=\sim(x \vee \sim y) \vee{ }^{\sim} z$ as



The corresponding CNF expression is $\left(w^{\sim} \sim x\right) \wedge(w \vee y) \wedge\left(\sim w V^{\sim} z\right)$

## Example: Start with $\sim(x \wedge(y \vee z)) V^{\sim} x \vee(y \wedge \sim z)$. This parses into




Node A becomes $\left(w V^{\sim} x\right) \wedge\left(\sim w V^{\sim} y\right) \wedge\left(\sim w V^{\sim} z\right)$

## B becomes $\left(\mathrm{tV}^{\sim} \mathrm{x}\right) \wedge(\sim \mathrm{tV} \mathrm{y}) \wedge(\sim \mathrm{tV} \sim z)$

C becomes
$\left(u V V^{\sim} x\right) \wedge\left(u V^{\sim} w V^{\sim} y\right) \wedge\left(u V^{\sim} w^{\sim} z\right) \wedge\left(\sim u V t V^{\sim} x\right) \wedge\left(\sim u V^{\sim} t V y\right) \wedge\left(\sim u V^{\sim} t V^{\sim} z\right)$

3CNF is the language of conjunctive normal form expressions where each clause has exactly 3 literals. For example, one expression in 3CNF is ( $\mathrm{x} \vee \sim y \mathrm{Vz}) \wedge\left(\mathrm{x} \vee \mathrm{y} \mathrm{V}^{\sim} \mathrm{z}\right)$

3CNF-SAT (also called 3SAT) is the language of satisfiable 3CNF expressions.

Theorem: 3CNF-SAT is NP-Complete Proof: We will reduce CNF-SAT to 3CNF-SAT by converting CNF expressions to 3CNF expressions.

Let $e=e_{1} \wedge e_{2} \wedge e_{3} \wedge \ldots \wedge e_{k}$ be an expression in CNF. Each $e_{i}$ must be a disjunction of literals.
a) Suppose $e_{i}$ has only one literal, $x$. Let $r$ and $s$ be new variables. Replace $e_{i}$ by $f_{i}=(x \vee r \vee s) \wedge(x \vee \sim r \vee \sim s) \wedge(x \vee r \vee \sim s) \wedge(x \vee \sim r \vee s)$ $f_{i}$ can be satisfied if and only if $x$ is satisfied.
b) Suppose $e_{i}$ has only two literals, such as $x \vee y$ Let $r$ be a new variable and replace $e_{i}$ by $f_{i}=(x \vee y \vee r) \wedge(x \vee y \vee \sim r)$
c) Suppose ei has 4 literals: ei $=x 1 \vee x 2 \vee x 3 \vee x 4$. Let $r$ be a new variable. Then $f_{i}=(x 1 \vee x 2 \vee r) \wedge(x 3 \vee x 4 \vee \sim r)$
d) Suppose $e_{i}$ has 5 literals: $e_{i}=x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \vee x_{5}$. Let $s_{1}$ and $s_{2}$ be new variables. Then

$$
\mathrm{f}_{\mathrm{i}}=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \mathrm{~s}_{1}\right) \wedge\left(\mathrm{x}_{3} \sim s_{1} \vee \mathrm{~s}_{2}\right) \wedge\left(\mathrm{x}_{4} \vee \mathrm{x}_{5} \vee \sim \mathrm{~s}_{2}\right)
$$

| $\mathrm{s}_{1}$ | $\mathrm{~s}_{2}$ | $\mathrm{f}_{\mathrm{i}}$ reduces to |
| :---: | :---: | :---: |
| T | T | $\mathrm{x}_{5}$ |
| T | F | $\mathrm{x}_{3} \vee \mathrm{x}_{4}$ |
| F | T | $\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge \mathrm{x}_{5}$ |
|  |  |  |
| F | F | $\mathrm{x}_{1} \vee \mathrm{x}_{2}$ |

We can extend this pattern to any number of literals. If $\mathrm{e}_{\mathrm{i}}$ has n literals then $f_{i}$ has $n-2$ clauses each with 3 literals and uses $n-3$ new variables. $\left|f_{i}\right|<=3^{*}\left|e_{i}\right|$ so the length of the $3 C N F$ expression this builds is a polynomial function of the length of the original CNF expression.

