
Other NP-Complete
Problems

More terminology for Boolean expressions:
• A literal is a variable or the negation of a variable.
• A clause is a single literal or the disjunction (OR) of literals..
• A Boolean expression is in conjunctive normal form if it is a single

clause or the conjunction (AND) of clauses. For example,
(~x ∨ ~y ∨ z) ∧(x ∨ ~y ∨ ~z)

CNF-SAT is the language of satisfiable conjunctive normal form
expressions.

Theorem: CNF-SAT is NP-Complete.
Proof: We will show that SAT reduces (in polynomial time) to CNF-
SAT. In other words we will start with a Boolean expression s and
produce expression s' so that s is in SAT if and only if s' is in CNF-SAT.

If we had a truth table for s it would be easy to make s'. For example,
suppose we know that the only times s is F is when x=T, y=T, z=F and
when x=F,y=T,z=T. We can build clauses that negate these instances:

s' = (~x ∨ ~y ∨ z) ∧(x ∨ ~y ∨ ~z)

Unfortunately, building a truth table for s takes exponential time.

Rather than building a truth table, given s we will build a CNF
expression s' that has additional variables (and so is not equivalent to
s) but is satisfiable if and only if s is satisfiable.

Step 1: Parse s into a parse tree.
For example, if s is ~(x ∨ ~y) ∨ ~z the parse tree is

∨

~ ~

z∨

x ~

y

Step 2: Walk down the tree using DeMorgan's laws to push negations
to variables.

∨

~ ~

z∨

x ~

y

∨

~

z

∧

y

x

~

becomes

Step 3. Start at the leaves and walk up, replacing each node with a
CNF expression that is satisfiable if and only if the subtree rooted at
the node is satisfiable.

Case 3A: Suppose the tree is

and we have already replaced E1 with CNF expression F1 and E2 with
F2. We replace the ∧-node with F1∧F2.

∧

E2E1

Case 3B:

∨

E2E1

Suppose the tree is

and we have already replaced E1 with CNF expression
F1=g1∧g2∧g3 ∧...∧gK (the gi are the clauses of F1) and E2 with
F2=h1∧ h2∧ h3 ∧...∧ hL. Let y be a new variable not used in s or
any of the F-expressions. We replace the ∨-node with
F = (y∨g1)∧(y∨g2)∧... ∧(y∨gK)∧(~y∨h1) ∧(~y∨h1) ∧... ∧(~y∨hL)
If y=T this requires h1∧ h2∧ h3 ∧...∧ hLto be T, so F2 must be T.
Similarly, if y=F then F1 must be T. F is satisfiable if and only if
F1∨F2 is satisfiable.

By the time we get to the root of the tree this has produced a CNF
expression s' that is satisfiable if and only if s is satisfiable. If the
length of s is n then s' has no more than n clauses, each with length
no more than n, so |s'| <= n2.

Example: In an earlier example we parsed s = ~(x ∨ ~y) ∨ ~z as

∨

~ ~

z∨

x ~

y

∨

~

z

∧

y

x

~

and converted that to

The corresponding CNF expression is (w∨~x)∧(w∨y) ∧(~w∨~z)

Example: Start with ~(x∧(y∨z))∨~x∨(y∧~z). This parses into

∨

~ ∨

~

x

∧

y ~

z

∧

x ∨

y z

∨

∨

~

x

∧

y ~

z

∨

~

x

∧

~

z

~

y

which
converts to

∨

∨

~

x

∧

y ~

z

∨

~

x

∧

~

z

~

y

A B

C
Node A becomes (wV~x)∧(~w∨~y)∧(~w∨~z)

B becomes (tV~x)∧(~tVy)∧(~tV~z)

C becomes
(uVwV~x)∧(uV~w∨~y)∧(uV~w∨~z)∧(~uVtV~x)∧(~uV~tVy)∧(~uV~tV~z)

3CNF is the language of conjunctive normal form expressions where
each clause has exactly 3 literals. For example, one expression in 3CNF
is (x∨ ~𝑦 ∨z)∧(x∨y ∨~z)

3CNF-SAT (also called 3SAT) is the language of satisfiable 3CNF
expressions.

Theorem: 3CNF-SAT is NP-Complete
Proof: We will reduce CNF-SAT to 3CNF-SAT by converting CNF
expressions to 3CNF expressions.

Let e = e1 ∧ e2 ∧ e3 ∧.... ∧ ek be an expression in CNF. Each ei must be
a disjunction of literals.

a) Suppose ei has only one literal, x. Let r and s be new variables.
Replace ei by fi=(x∨r∨s) ∧(x∨ ~r ∨ ~s) ∧(x ∨ r ∨ ~s) ∧(x ∨ ~r ∨ s)
fi can be satisfied if and only if x is satisfied.

b) Suppose ei has only two literals, such as x∨y Let r be a new
variable and replace ei by fi=(x∨y∨r) ∧(x∨y∨~r)

c) Suppose ei has 4 literals: ei = x1 ∨ x2 ∨ x3 ∨ x4. Let r be a new
variable. Then fi=(x1 ∨ x2 ∨ r) ∧(x3 ∨ x4 ∨ ~r)

d) Suppose ei has 5 literals: ei = x1 ∨ x2 ∨ x3 ∨ x4∨ x5. Let s1 and s2

be new variables. Then
fi=(x1 ∨ x2 ∨ s1) ∧(x3 ~𝑠1 ∨ s2) ∧(x4 ∨ x5 ∨ ~s2)

s1 s2 fi reduces to

T T x5

T F x3 ∨ x4
F T (x1 ∨ x2) ∧ x5

F F x1 ∨ x2

We can extend this pattern to any number of literals. If ei has n
literals then fi has n-2 clauses each with 3 literals and uses n-3 new
variables. |fi| <= 3*|ei| so the length of the 3CNF expression this
builds is a polynomial function of the length of the original CNF
expression.

