Other NP-Complete
Problems

More terminology for Boolean expressions:
* Aliteral is a variable or the negation of a variable.
* Aclause is a single literal or the disjunction (OR) of literals..
A Boolean expression is in conjunctive normal form if it is a single

clause or the conjunction (AND) of clauses. For example,
("X V~yVz)A(XV~yV~z)

CNF-SAT is the language of satisfiable conjunctive normal form
expressions.

Theorem: CNF-SAT is NP-Complete.

Proof: We will show that SAT reduces (in polynomial time) to CNF-
SAT. In other words we will start with a Boolean expression s and
produce expression s' so that s is in SAT if and only if s' is in CNF-SAT.

If we had a truth table for s it would be easy to make s'. For example,

suppose we know that the only times s is F is when x=T, y=T, z=F and

when x=F,y=T,z=T. We can build clauses that negate these instances:
s'=("XV~yVz)AXxV~yV~z)

Unfortunately, building a truth table for s takes exponential time.

Rather than building a truth table, given s we will build a CNF
expression s' that has additional variables (and so is not equivalent to
s) but is satisfiable if and only if s is satisfiable.

Step 1: Parse s into a parse tree.
For example, if sis ~(x V ~y) V ~z the parse tree is

Step 2: Walk down the tree using DeMorgan's laws to push negations
to variables.

V /V\
~/ \N becomes A~
| \ /\ \

/\/ Z ~ 'Y z
\ |
X ~ X

Step 3. Start at the leaves and walk up, replacing each node with a
CNF expression that is satisfiable if and only if the subtree rooted at
the node is satisfiable.

N
Case 3A: Suppose the tree is / \
E1 E2

and we have already replaced E1 with CNF expression F1 and E2 with
F2. We replace the A-node with F1AF2.

Case 3B:

Suppose the tree is / \
E1 E2

and we have already replaced E1 with CNF expression
F1=g,Ag,Ag; A...Agy (the g, are the clauses of F1) and E2 with
F2=h,Ah,Ah; A..Ah. Letybe anew variable not usedins or
any of the F-expressions. We replace the V-node with

F = (yVg)AYVE,)A... AlyVgA(~yVh,) A(~yVh,) A... A(YyVh))

If y=T this requires hyA h,A h; A...Ahto be T, so F2 must be T.

Similarly, if y=F then F1 must be T. F is satisfiable if and only if
F1VF2 is satisfiable.

By the time we get to the root of the tree this has producec

expression s' that is satisfiable if and only if s is satisfia
length of s is n then s' has no more than n clauses, eac
no more than n, so |s'| <=n?.

ole.

a CNF
f the

N wit

n length

Example: In an earlier example we parsed s = ~(x V ~y) V ~z as

%
o

~y

V
N

~ ~ and converted that to A
| \ / N
/V Z <Y 7z
~ |

X ~
| X

y

The corresponding CNF expression is (WV~X)A(wVy) A(“wV™z)

Example: Start with ~(xA(yVz))V~xV(yA~z). This parses into

/V\ which / \
I /V\ converts to N/ >\ / \
INT N il
y/ V]

T
Z V z

C
/ \ Node A becomes (WV~X)A(“WV~y)A(~wV~z)
N

A \ VB B becomes (tV~x)A(~tVy)A(~tV~z)
WA
WAV

C becomes

(UVWV~X)A(UVWVY)A UV WV~ Z)A(CUVEVEX)A(YUV™EVY)A(~uV ™tV ~z)

3CNF is the language of conjunctive normal form expressions where
each clause has exactly 3 literals. For example, one expression in 3CNF
is (XV ~y VZ)A(xVy V~z)

3CNF-SAT (also called 3SAT) is the language of satisfiable 3CNF
expressions.

Theorem: 3CNF-SAT is NP-Complete

Proof: We will reduce CNF-SAT to 3CNF-SAT by converting CNF
expressions to 3CNF expressions.

lete=e; Ae, Ae; A.... Ae, be an expression in CNF. Each e, must be
a disjunction of literals.

a) Suppose e, has only one literal, x. Let r and s be new variables.
Replace e, by f=(xVrVvs) A(xV ~rV ~s) A(XVrV ~s) A(xV ~rVs)
f. can be satisfied if and only if x is satisfied.

b) Suppose e, has only two literals, such as xVy Let r be a new
variable and replace e, by f=(xVyVvr) A(xVyVv~r)

c) Suppose ei has 4 literals: ei =x1V x2V x3Vx4. Letr be anew
variable. Then f=(x1Vx2 V r) A(x3 V x4V ~r)
d) Suppose e has 5 literals: e, =x; VX, VX3 VX,V X:. Lets, ands,
be new variables. Then
f=(x; VX, Vs;) AlXg ~S; V'S,) AlX, VXV ™s,)

S; |'S, f. reduces to
T (T Xc
T|F X3 V X,

F I T (X, V X,) A X
F | F X, V X,

We can extend this pattern to any number of literals. If e, has n
literals then f, has n-2 clauses each with 3 literals and uses n-3 new
variables. |f.| <=3*]|e,| so the length of the 3CNF expression this
builds is a polynomial function of the length of the original CNF
expression.

